Integrating AHP and data mining for product recommendation based on customer lifetime value
نویسندگان
چکیده
Product recommendation is a business activity that is critical in attracting customers. Accordingly, improving the quality of a recommendation to fulfill customers’ needs is important in fiercely competitive environments. Although various recommender systems have been proposed, few have addressed the lifetime value of a customer to a firm. Generally, customer lifetime value (CLV) is evaluated in terms of recency, frequency, monetary (RFM) variables. However, the relative importance among them varies with the characteristics of the product and industry. We developed a novel product recommendation methodology that combined group decision-making and data mining techniques. The analytic hierarchy process (AHP) was applied to determine the relative weights of RFM variables in evaluating customer lifetime value or loyalty. Clustering techniques were then employed to group customers according to the weighted RFM value. Finally, an association rule mining approach was implemented to provide product recommendations to each customer group. The experimental results demonstrated that the approach outperformed one with equally weighted RFM and a typical collaborative filtering (CF) method. # 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Integrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملCustomer behavior mining based on RFM model to improve the customer relationship management
Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...
متن کاملCUSTOMER CLUSTERING BASED ON FACTORS OF CUSTOMER LIFETIME VALUE WITH DATA MINING TECHNIQUE
Organizations have used Customer Lifetime Value (CLV) as an appropriate pattern to classify their customers. Data mining techniques have enabled organizations to analyze their customers’ behaviors more quantitatively. This research has been carried out to cluster customers based on factors of CLV model including length, recency, frequency, and monetary (LRFM) through data mining. Based on LRFM,...
متن کاملA New Model to Speculate CLV Based on Markov Chain Model
The present study attempts to establish a new framework to speculate customer lifetime value by a stochastic approach. In this research the customer lifetime value is considered as combination of customer’s present and future value. At first step of our desired model, it is essential to define customer groups based on their behavior similarities, and in second step a mechanism to count current ...
متن کاملCustomer lifetime value model in an online toy store
Business all around the world uses different approaches to know their customers, segment them and formulate suitable strategies for them. One of these approaches is calculating the value of each customer for the company. In this paper by calculating Customer Lifetime Value (CLV) for individual customers of an online toy store named Alakdolak, three customer segments are extracted. The level of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information & Management
دوره 42 شماره
صفحات -
تاریخ انتشار 2005